Multi-City Analysis of AirBnB Markets: Key
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Determinants, Dynamics, Value, and Predictive
Modelling with Machine Learning

This study analyzes key determinants of AirBnB listing prices across eleven major cities using machine learning algorithms by developing predictive models. The work will further analyze the dynamics of
markets in relation to the value assessment of cities so as to optimize pricing strategies to enhance booking experiences for both hosts and travellers.
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i 04d T o : For New Hosts

e Set competitive pricing based on local market trends.
e Focus on high-demand neighbourhoods like Shinjuku (Tokyo) or Eixample (Barcelona).
 Prioritize key price drivers like guest capacity and bedrooms; offer essentials.

For Existing Hosts
e Adjust pricing based on demand trends and city-specific factors.
e Upgrade amenities and focus on guest feedback to boost ratings.
e Expand into high-performing neighbourhoods.

For Budget Travellers
e Choose affordable cities like Santiago or Bangkok for value-driven stays.
e Focus on top-rated, budget-friendly neighbourhoods with essential amenities.

For Experience Seekers
e Explore unique stays in Barcelona or luxury in Cape Town.
e Stay in culturally rich areas like Plaka (Athens) or Shinjuku (Tokyo).

For Airbnb Platform

. e Enhance dynamic pricing tools with neighbourhood trends and seasonal demand data.

o Add detailed neighbourhood profiles and personalized recommendations.
e Provide city-specific onboarding for new hosts to set competitive strategies.
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