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This project develops a deep learning model to classify images as 
either AI-generated or real, addressing the growing challenge of 
synthetic media detection. Using the DeepGuardDB dataset and 
guided by the CRISP-DM methodology, we implemented and 
compared three Convolutional Neural Networks (CNNs) architectures 
via transfer learning. The best-performing model was further optimised 
using hyperparameter tuning and fine-tuning techniques The resulting 
model achieved strong accuracy and generalisation, making it a 
promising candidate for real-time deployment and practical use across 
diverse industries. 
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CONCEPTUAL FRAMEWORK

We used the DeepGuardDB dataset, containing 13,000 images evenly 
split between real photos (from MS-COCO and Flickr30k) and AI-
generated images produced by Stable Diffusion 3, Imagen, and DALL-
E 3. This dataset is designed to support research in distinguishing real 
from synthetic visual content.
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DEVELOPMENT OF A DEEP LEARNING MODEL FOR 
SYNTHETIC VS. REAL IMAGE CLASSIFICATION

This project followed the CRISP-DM methodology (Cross-Industry 
Standard Process for Data Mining), a widely adopted framework for 
structuring data science workflows. CRISP-DM divides the project into 
six logical stages forming a cyclical process that supports iterative 
improvement. Cirillo, (2017) 

RESEARCH QUESTIONS
The four questions below represent the core focus of the entire study:
Q.1. What preprocessing steps are required to prepare the dataset 
for compatibility with different CNN architectures?
Q.2 Which CNN architecture delivers the best performance for our 
binary classification task?
Q.3 How can the selected model be further optimised to enhance its 
accuracy and generalisation capabilities?
Q.4 Does the final model meet the defined business success 
criteria, demonstrating potential for integration into real-world 
applications?

A summarised answer to the research questions are presented below:

Q.1. All images were resized to 224x224 pixels and converted to .jpg 
format for consistency. Data augmentation was applied to the training set, 
and each architecture followed its specific preprocessing pipeline.
Q.2. ResNet-50 outperformed VGG-1 and EfficientNetB0, delivering the 
highest accuracy and most balanced results across key classification 
metrics.
Q.3. We used Keras Tuner to identify the optimal hyperparameters and 
applied fine-tuning to retrain the top layers of the ResNet-50 base, leading to 
improved performance and better generalisation.
Q.4. Yes, the model achieves high accuracy, maintains balanced 
performance across metrics, generalises across different image sources, and 
is fully deployable through a Streamlit app, showing strong potential for real-
world integration.

BUSINESS UNDERSTANDING
The rapid growth of generative AI has made it increasingly difficult to 
distinguish real images from synthetic ones. This poses serious risks in 
the spread of fake news and misleading narratives, where AI-generated 
visuals can be used to manipulate user perception. As authenticity 
becomes harder to verify, developing accurate detection tools is 
essential for safeguarding information integrity.

Figure 1 – CRISP-DM stages. Source: Cirillo, (2017)

Figure 2 - Random samples taken from original dataset

DATA PREPARATION
The dataset was split into training, validation, and test sets to ensure 
independent model development, tuning and evaluation.
We applied Data Augmentation to the training set using random 
transformations–-such as flips, rotations, zooms, and 
brightness/contrast adjustments–to enhance generalisation and reduce 
overfitting.

Figure 3 – Data Augmentation applied in a few samples from training set.

MODELLING
Training a CNN from scratch is intensive due to the complexity of tuning 
kernels, filter sizes, and weight parameters through backpropagation. 
(Mirza Rahim Baig et al., 2020) 
We applied Transfer Learning using three increasingly sophisticated 
architectures: VGG-16 (plain network), ResNet-50 (residual learning) 
and EfficientNet (compound scaling).
To ensure a fair comparison of feature extraction performance, we 
applied the same custom classification head to all three models and 
evaluated them on the same test set.

EVALUATION

Custom Classification Head

All models used a shared custom classification head consisting of a 
fully connected layer with 128 neurons and ReLU and the final layer 
was a fully connected output neuron with a Sigmoid activation.

We evaluated all models using classification report metrics and 
confusion matrices to assess classification performance. This analysis 
guided the selection of the best-performing architecture for further 
optimisation.

ResNet-50 achieved the highest accuracy (84.9%), outperforming both 
EfficientNetB0 and VGG-16. Based on its superior performance, it was 
selected for further optimisation through hyperparameter tuning and 
fine-tuning.

HPO & Fine-Tuning

To improve model performance, we first applied hyperparameter 
optimisation using Keras Tuner’s RandomSearch to identify the best 
configuration for the classification layers (Team, n.d.) . Then, we 
performed fine-tuning by unfreezing and retraining the top layers of the 
ResNet-50 base model, allowing it to learn higher-level features tailored 
to our specific dataset. (TensorFlow, 2025) 

Figure 5 – Accuracy Comparison across multiple architectures.

DEPLOYMENT

Figure 6 – Final Confusion matrix displaying the TP, TN, FP and FN of the final model.

Figure 4 – Modelling process from data preparation to model evaluation.

We deployed the fine-tuned ResNet-50 model through a Streamlit web 
application. The app offers an interactive interface for real-time image 
classification. With an accuracy of 86.5% and balanced precision and 
recall, the model is well-suited for practical use in tasks like media 
verification and content moderation.

Figure 7 – Model deployed in Streamlit web application performing classification.
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The confusion matrix shows strong classification capability with 
relatively low misclassification rates. These results confirm the model’s 
reliability in distinguishing AI-generated content from real photographs.


